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Abstract—
The need for a miniaturized device that can perform closed-

loop operation is imminent with the growing interest in brain-
controlled devices and in stimulation to treat neural disor-
ders. This work presents the Neural Closed-Loop Implantable
Platform (NeuralCLIP), a modular FPGA-based device that
can record neural signals, process them locally to detect an
event and trigger neural stimulation based on the detection.
Specifically, the NeuralCLIP is designed to record and process
different neural signals in the frequency range between 20 Hz
and 1 kHz. It is a flexible platform that can be reconfigured
to optimize parameters like channel count and operation
frequency based on the processing requirements. The signal-
agnostic feature is demonstrated by testing the device with
calibration signals from standard bio-signal emulators. The
application focus for this device is a brain-computer-spinal
interface (BCSI) which is demonstrated based on local field
potential (LFP) signals recorded from a rat motor cortex.
This work demonstrates recording and on-device processing of
LFP signals to decode action intent and determine stimulation
timing. The FPGA implementation of the device also targets
development of low power algorithms for closed-loop operation.

I. INTRODUCTION
Neural interface devices enable brain-controlled technol-

ogy and provide tools for studying the brain and treating
neural disorders. The next generation of such devices must
be miniaturized and implantable to record neural signals
and stimulate neurons [1]. Using the recorded signals, these
devices should enable real-time detection and treatment of
neural disorders. Hence, the devices must perform local
computation on the recorded signals to identify triggers for
closed-loop neural stimulation.

Research in this field can be classified into three broad
efforts. First, neural signal acquisition, including the devel-
opment of state-of-the-art recording devices and electrodes
[2] [3] [4]. Second, neural stimulation circuits capable of
activating and blocking neuron function [5] [6]. Third, pro-
cessing the recorded signals to either detect events (like
epilepsy seizures) or decode intent (correlate neural signals to
action intent) for closed-loop operation. While recording and
stimulation are moving from bench top circuits to integrated
circuits (ICs), signal analysis is yet to be miniaturized.
Moreover, tying the three efforts together to make a small
closed-loop device is still at an early stage. Statistical tools
have provided us methods like Discrete Wavelet Transform
and Support Vector Machines to analyze recorded data. The
recent work in [5] [7] implement processing of Spikes and
Electroencephalogram (EEG for epilepsy detection) and are

early attempts at fully closing the loop. However, these
systems are limited to depending on external devices for
processing or operate with signals at higher amplitudes (mV).
Brain-machine interface applications require the ability to
detect spike and local field potential (LFP) signals that
lie in the 20 µV to 200 µV range. A detailed study is
presented in [8] which presents closed-loop neural recording
and stimulation in primates. This system, however, uses a
rack-mounted test setup.

In this work, we present a miniaturized FPGA-based
platform that combines the ability to record and process
neural signals in the frequency range of spikes, LFP, ECoG
and EEG. The platform is developed as a modular COTS
printed circuit prototype that can scale processing in terms
of system frequency, sampling rates and number of channels
based on power availability and the neural signal of interest.
The vision for this modular device is to enable research in
low power closed-loop algorithms as well as to provide a
platform to study and develop treatment for neural disorders.
The FPGA-based processing makes it a useful development
platform for future neural-interface ASIC development. The
device is tested with a bio-signal calibrator as well as
prerecorded LFP signals from a rodent. The test application
for this platform is a brain-computer-spinal interface where
closed-loop operation triggers stimulation in the spinal cord
to bypass an injury and reanimate paralyzed limbs. The
concept of stimulation for limb reanimation is explored in
[9]. An illustration of the test application, description of
the recording signal space and the NeuralCLIP platform are
shown in Fig.1. The design, features and results from testing
this device are described in the following sections.

II. SYSTEM DESIGN

A. Design for re-configurable operation
The key capabilities of the NeuralCLIP (shown in Fig.1)

are recording, local processing and stimulating on a small
form-factor device. The platform uses a record/stimulate
front end from Intan technologies (RHS2116), which has 16
unipolar channels that can be configured as low noise am-
plifiers or as constant-current stimulators. A four-wire serial
peripheral interface (SPI) bus is used to configure and poll
recording data from the Intan. The on-chip ADC provides
16-bit samples from 16 channels at more than 44 ksps each.
The configuration architecture used in our device supports
on-demand channel disabling to reduce power consumption
by unused channels.
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Fig. 1: Image shows the functional block diagram and application of the NeuralCLIP. The application includes recording LFP signals
from the motor cortex, processing them locally on the implantable device to identify intention and trigger stimulation in the spinal cord to
reanimate an arm paralyzed due to spinal cord injury. The device block diagram shows the pipeline processing on FPGA. This includes
modular synchronized blocks to configure the recording front-end to acquire the data from it, followed by filtering and correlation of the
recorded signals to decode the motor intent. Decoded intent is then used to trigger stimulation. The device also provides a development
feature where the secondary SPI module can be used to record data at each processing stage and communicate it to an external computer
for training, study and analysis.

The central controller and processing are implemented on
a low power FPGA from Microsemi (AGLN250). Specifi-
cally, the state machines for configuring and data acquisition
from the Intan, the processing algorithm to provide stimu-
lation trigger, and a secondary SPI debug channel are all
implemented as synchronous modular blocks in the FPGA.
These blocks are part of a pipeline controlled by the system
clock. This modular implementation allows parallel data
acquisition, processing and debugging, and makes adding or
removing blocks easy. Each block can scale flexibly in fre-
quency or channel count to optimize the system performance
without affecting the processing pipeline. This modular ar-
chitecture also allows tailoring of the processing blocks to
specific signals such as LFP or spikes. The parameters that
allow for scaling and flexibility are as follows:

1) Processing clock: This parameter can be set to either
0.5, 1, 2, 4, 8, or 16 MHz to scale the overall power
consumed by the system.

2) Channel Count: The 16 available channels can either
record, stimulate, or be disabled to save power.

3) Sampling frequency: This is a parameter that scales
with the system clock. It is set by the rate at which
the Intan is queried for data.

4) Debug interface: The platform provides an optional
secondary SPI block for debugging and transferring
data off-device for additional post-recording analysis.

The data acquisition and processing blocks are implemented
in hardware description language and used to configure the
FPGA through the Libero SoC IDE.

B. Data acquisition and processing pipeline
A pipeline diagram for the data flow description is pro-

vided in Fig.2. The first stage in the pipeline is a state
machine that communicates with the Intan to configure it
and acquire data. All data is in 2’s complement format to

simplify arithmetic operations on the signed data. The second
stage is an optional common average reference (CAR) filter
that can be used to remove common noise. The third stage
is a band pass filter (BPF) which typically consumes a large
amount of resources. For example, a single instance of a
16x16 bit multiplier takes up 17 percent of the resources
available on the FPGA. The filter implementation on the
NeuralCLIP, however, is an approximate computing block.
The filter coefficients are first generated for the frequency
range of interest using MATLAB. By normalizing these
coefficients to their nearest fraction of 2, we implement the
divide operation as arithmetic right shifts. Since we handle
2’s complement data, the division of a k-bit Sample (S) by
a coefficient (C) to produce result (fO) is reduced to the
following form, where ”k-bit-ext” is bit extension by k bits:
If (C[sign] is 1) :
fO = {{k−bit−ext(C[sign])

⊕
S[sign]}, S+1} <<< C

else :
fO = {{k − bit− ext(C[sign])

⊕
S[sign]}, S} <<< C

The fourth stage is a canonical correlation analysis
(CCA) block that scales the channels with correlation co-
efficients [10]. The offline training to determine these co-
efficients is done with recorded data from N channels and
the corresponding ground truth data in Matlab. The FPGA
implementation is similar to that of the band-pass filter to
optimize for available resources.

C. Device Power and Control

The power supply for this platform is derived from a
3.3 V line that is used to generate a variable ±3.3 V
to ±12 V supply for the Intan stimulator and a 1.2 V
core supply for the FPGA. The baseline static power for
the NeuralCLIP, which includes power for regulators and
idle systems, was measured to be an average of 58 mW.
The power consumption measured for active recording and
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Fig. 2: To record from N channels, the processing pipeline begins with the N Intan queries and the data is buffered for the N channels.
This buffered data is then fed to the first processing block in parallel. The output of each block is buffered by N channels as input for the
next block. A single system clock controls the transfer of data from each buffer to the next block and hence makes the functional blocks
on the FPGA independent and synchronous. The data from N channels are thus processed in parallel. Processing blocks also function in
parallel allowing optional addition or removal of blocks and channels.

processing of four channels of LFP data across six system
frequencies are provided in Table.I. For neural signals, the
maximum required sampling rate per channel is about 20
ksps. However, for LFP (signals below 500 Hz) the sampling
rate can be reduce further. This allows the system clock
to be lowered in relation to the sampling rate. To ensure
this power scaling with respect to system frequency, the
sampling and data processing blocks are driven by sub-
clocks derived from the system clock. Thus, the overall
device power consumption can be decreased by reducing the
system frequency, effectively lowering the data sampling and
processing rate.

System Frequency (MHz) 0.5 1 2 4 8 16
Sampling Rate kS/s/ch 2.4 4.8 9.6 19.2 38.5 77.1
Record and Processing
Power (mW) 0.99 1.32 1.98 4.29 6.93 13.2

TABLE I: Power Consumption vs. System Frequency

III. TEST SETUP

To validate the NeuralCLIP operation, a ground truth study
was first performed with calibrations signals. The signals
used for testing are sine waves distributed in the bands of
interest at 30 HZ, 200 Hz (Coulbourn Biosignal calibrator)
and 800 Hz(Tucker Davis Technology (TDT)). To verify the
full processing pipeline, testing was done with prerecorded
data from the motor cortex of a rat. The rat was trained to
push a lever in order to receive a reward. Neural signals were
recorded from the motor cortex during this period. The CCA
coefficients were extracted from a window of this recording
in correlation to the lever push. A TDT neural interface setup
was used to emulate the rat and play back this neural data.
Supply voltage of 3.3 V was derived from an external DC
source. A digital logic analyzer was used to extract data from
each block. The following signals were logged; raw recorded
signal, the BPF output and the CCA output from N channels.

We use N = 4 due to a limitation on the number of output
channels from the TDT.

IV. RESULTS AND DISCUSSION

This section presents the results from testing and discusses
future directions. The device was first tested to verify its
ability to record and process signals in the neural frequency
range (Fig. 3). The recorded signals, exported through the
debugging interface, show the raw and BPF outputs for 30
Hz, 200 Hz, and 800 Hz test signals. Removal of the high
frequency noise is evident on comparing the two rows in
each case. In addition, the insets also show the difference in
the sinusoidal signal quality before and after filtering.

Next, the processing block was tested using LFP data
recorded from a rat while the rat was performing a lever push
task. The plots in Fig. 4 show the extracted signal after BPF
processing from one of the channels, where the amplitude
change corresponding to the lever push intent is present.
The CCA block then correlates the multiple channels, based
on pre-determined coefficients, to provide a single output
that is used to identify intent (Fig. 4). On comparing the
CCA output and the lever push plots, we see a correlated
increase in amplitude of the CCA signal that is used to
trigger stimulation on windowed-threshold crossing. Thus the
closed-loop operation that is typically limited to benchtop
test setups can be enabled on an implantable platform.
Following this validation of recording and processing to
trigger closed-loop stimulation, the future objective is to
implant the NeuralCLIP and test for long-term ability to
provide closed-loop stimulation in the spinal cord.

V. CONCLUSION

This work presents the NeuralCLIP, a device capable of
recording neural signals and performing local computation
on an FPGA to trigger stimulation. By implementing modu-
lar synchronous blocks the device achieves reduced resource
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Fig. 3: FFT plots for the three calibration signals from the NeuralCLIP. Buffered data from Record SPI block is provided on the top panel
and the corresponding BPF buffer output in the bottom panel. Insets show filtering of high frequency signal and improved signal quality.

Fig. 4: Validation with LFP signals recorded from the motor cortex of a rat during a lever push task. First panel: signal from one channel
after CAR and BPF processing. Second panel: CCA block output (amplitude correlation to lever push). Third panel: ground truth lever
push recording. The BPF and CCA outputs are provided as ADC steps which have a resolution of 0.195 µV/LSB. Comparing panel two
and three, the output on the CCA shows the intent as an increase in amplitude correlated to the ground truth lever push, marked by the
horizontal orange bars in the second panel.

and power consumption for data processing. In addition,
these processing blocks can be easily modified for different
algorithms. This work also demonstrates decoding of LFP
signals to enable closed-loop operation. Our application is
a brain-computer-spinal interface that records LFP signals
from the motor cortex of a rat, processes them to detect a
lever-push intent to trigger stimulation in the spinal cord for
reanimation of the limb. The NeuralCLIP also allows access
to data at each stage of processing for either training or post-
recording analysis to enable neuromodulation research. With
the implementation on FPGA, this device facilitates devel-
opment of low power algorithms for closed-loop operation.

REFERENCES

[1] M. A. L. Nicolelis, “Actions from thoughts,” Nature, vol. 409, no.
6818, pp. 403–407, 2001.

[2] R. R. Harrison and C. Charles, “A low-power low-noise cmos amplifier
for neural recording applications,” IEEE JSSC, vol. 38, no. 6, pp. 958–
965, June 2003.

[3] A. C. Patil and N. V. Thakor, “Implantable neurotechnologies: a
review of micro- and nanoelectrodes for neural recording,” Medical

& Biological Engineering & Computing, vol. 54, no. 1, pp. 23–44,
Jan 2016.

[4] X. Liu et al., “A fully integrated wireless compressed sensing neural
signal acquisition system for chronic recording and brain machine
interface,” IEEE TBCAS, vol. 10, no. 4, pp. 874–883, Aug 2016.

[5] D. J. Yeager et al., “A 4.78mm2 fully-integrated neuromodulation
soc combining 64 acquisition channels with digital compression and
simultaneous dual stimulation.” in VLSIC. IEEE, 2014, pp. 1–2.

[6] V. Ranganathan et al., “A high-voltage compliant neural stimulator
with hf wireless power and uhf backscatter communication,” IEEE
Wireless Power Transfer Conference (WPTC), pp. 1–4, 2016.

[7] W.-M. Chen et al., “A fully integrated 8-channel closed-loop neural-
prosthetic cmos soc for real-time epileptic seizure control.” IEEE
JSSC, vol. 49, no. 1, pp. 232–247, 2014.

[8] M. Capogrosso et al., “A brainspine interface alleviating gait deficits
after spinal cord injury in primates,” Nature, p. 284, nov.

[9] S. E. Mondello et al., “Therapeutic intraspinal stimulation to generate
activity and promote long-term recovery,” Frontiers in Neuroscience,
vol. 8, no. 8 FEB, pp. 1–7, 2014.

[10] A. Khorasani et al., “Brain control of an external device by extracting
the highest force-related contents of local field potentials in freely
moving rats,” IEEE TNSRE, vol. 26, pp. 18–25, 2018.

794



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

 HistoryList_V1
 qi2base



