Pre-touch Sensing for Sequential Manipulation
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Abstract— The primary focus of this work is to examine
how robots can achieve more robust sequential manipulation
through the use of pre-touch sensors. The utility of close-range
proximity sensing is evaluated through a robotic system that
uses a new optical time-of-flight pre-touch sensor to complete
a highly precise and sequential task - solving the Rubik’s cube.
The techniques used in this task are then extended to a more
general framework in which ICP is used to match pre-touch
data to a reference model, demonstrating that even simple pre-
touch scans can be used to recover the pose of common objects
that require sequential manipulation.

I. INTRODUCTION

As robots continue to transition from operating in con-
trolled, carefully designed environments towards human-
centric, unstructured ones, they will have to make more
sophisticated use of sensing to cope with the inherent
uncertainty in our real world. In particular, robust robot
manipulation is difficult to achieve because of the uncertainty
involved in manipulating an object [1]. For tasks that require
sequential manipulations, the robot’s belief about the pose
of the object at any point in time can be corrupted by
a poor characterization of the initial pose, or through the
accumulation of error caused by controller noise, previous
imperfect manipulations, and perceptual errors. Depending
on the precision required, such errors can cause the robot to
fail at the task of interest.

In this work, we show that accumulating manipulation
errors can be controlled by proximity sensors mounted to
the robot’s end-effectors, what we call "pre-touch’ sensors.
First, we demonstrate that pre-touch sensing allows a robot
to much more effectively complete a particular sequential
manipulation task, i.e solving a Rubik’s cube. In order to
demonstrate that pre-touch sensing can be applied to other
objects that may require sequential manipulation, we show
that employing even a simple pre-touch scanning strategy
allows the robot to infer the pose of a number of common
objects.

We chose to first tackle the task of solving the Rubik’s
cube because the challenges that general purpose robots face
when attempting to achieve sequential manipulation are well
represented by this task. Solving a Rubik’s cube can require
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Fig. 1: The robot is able to precisely manipulate the Rubik’s
cube using the equipped pre-touch sensors.

up to 20 rotations [2]. For each rotation, the robot may have
to alter its grasp on the cube by transferring it from one hand
to the other and/or shifting the grasp point(s). Because each
face of a Rubik’s cube contains sub-cubes of a dimension of
only 1.9 cm, each manipulation may only be able to tolerate
error on the order of millimeters. Even if the robot is able
to complete a rotation at a given point in time, an imprecise
grasp could cause future rotations to fail by invalidating the
robot’s belief of where the cube is with respect to the robot’s
gripper.

Ultimately, the authors aim to show that pre-touch sensing
enables robots to accomplish sequential manipulations more
effectively. We hypothesize that pre-touch scanning enables a
robot to gain the geometric information necessary to estimate
the pose of an object of interest, and thereby perform actions
that are common in sequential manipulation, such as re-
grasping. The specific contributions of this work are:

1) Introduction of a new type of pre-touch sensing based
on optical time-of-flight measurements, and full inte-
gration of this sensor with the PR2 system.

2) The application and evaluation of pre-touch sensing
for robot manipulation in the context of solving the
Rubik’s cube. To the best of the authors’ knowledge,
pre-touch has never previously been applied to solv-
ing the Rubik’s cube. Furthermore, the authors argue
that solving the Rubik’s cube is the most complex,
sequential task to which pre-touch sensing has ever
been applied.

3) The use of an Iterative Closest Point (ICP) algorithm
to align a 1D pre-touch scan to a pre-existing reference
point cloud in order to estimate object pose.



4) A comparison of the performance of optical time-of-
flight pre-touch (mounted in one finger) with our prior
electric field pre-touch sensor (mounted in another
finger), and the finding that the two sensing modalities
are complementary.

The remaining sections of this paper detail the develop-
ment of a new optical pre-touch sensor, and demonstrate
the utility of pre-touch sensing in sequential manipulation.
Section 2 discusses related work. Section 3 describes the
utilized pre-touch sensors, and Section 4 details the scanning
strategies used to estimate object pose. Section 5 outlines and
presents experiments conducted to analyze the effectiveness
of these methods. Section 6 summarizes this work and
proposes future work.

II. RELATED WORK

Many approaches to robot manipulation have used cameras
to localize target objects. For example, Maitin-Shepard [3]
developed a vision-based algorithm to reliably detect corners
of a piece of cloth, which they used to autonomously
fold towels. In another example, Chang [4] singulates ob-
jects from a pile. The developed perception module uses
image data to determine whether a grouping of one or
more items has been singulated and how that group should
be manipulated. Cameras have also been integrated into
closed-feedback loops in order to achieve visual servoing.
Vahrenkamp [5] demonstrate how a humanoid robot can
utilize visual servoing to grasp multiple types of objects.
For a more complete study of visual servoing, see [6].

While cameras can be employed by robots to sense objects
from relatively far away, tactile sensors aid manipulation
upon making contact with an object. Unlike cameras that
are usually mounted to the head of the robot, tactile sen-
sors are attached to the robot’s end-effector. As a result,
tactile sensors are typically more maneuverable, potentially
allowing them to sense regions of an object that could not
be imaged by a camera because of their relatively static
nature. Li [7] created a tactile sensor that utilized GelSight
technology to produce height maps with a resolution of
240x320 pixels. With these height maps, they were able to
localize small parts within the robot’s grasp and perform fine-
grained manipulations, such as insertion of a USB connector.
Petrovskaya and Khatib [8] use tactile measurements to
estimate object pose. Particle-based methods are used to
represent the belief distribution over possible poses, allowing
their robot to locate and grasp a box and door handle.

Pre-touch sensors typically operate at a range intermediate
to that of tactile sensors and vision-based sensors, endowing
them with some of the same benefits that are achieved by
sensors at both ends of the range spectrum. Similar to tactile
sensors, pre-touch sensors are mounted to the robot’s end-
effector, making them more robust against occlusion than
cameras. Also, by sensing at a closer range, they have the
potential to measure more precisely. Similar to camera or
depth sensors, pre-touch sensors do not have to make contact
with a surface or object before a measurement can be taken.

Contact is a disadvantage for tactile sensors because it can
cause an object to be unintentionally displaced.

Optical pre-touch sensors have been used extensively in
robot grasping because of their ability to accurately measure
a wide range of materials. Hsaio [9] combine optical pre-
touch sensors with a probabilistic sensor model to build a
reactive controller that could grasp a number of common ob-
jects. In [10], Maldonado use measurements from an optical
sensor based on computer mouse technology to reconstruct
the shape of objects and grasp them. Data from the optical
sensor is also used for classification of object surface and slip
detection. Guo [11] utilizes a break-beam optical sensor to
measure objects within the robot’s gripper that are difficult
for other pre-touch sensors, such as specular objects that
present challenges for reflective optical sensors. All three of
these works measure the amount of light reflected off of an
object to detect it [10], [11] or infer distance [9], whereas
the sensor we developed uses time-of-flight technology to
measure distance. Compared to [9], our sensor has a longer
range with comparable accuracy, and does not need to be
calibrated for the surface reflectivity of the object.

Electric field sensing has been widely explored in the con-
text of pre-touch sensing. Electric field sensing is typically
achieved by transmitting an AC signal from one electrode to
another. Objects near the sensor will alter the displacement
current between the two electrodes, inducing a deviation
from the baseline measurement (in which no objects are
near the sensor) [12]. Electric field sensors are most adept
at measuring conductive objects, but are unable to detect
plastics, foams, or other objects with a dielectric constant
similar to that of air. In [13], electric field sensing is used to
localize an object and preshape the robot’s fingers in order
to achieve a stable grasp. Mayton et al. [14] extend electric
field sensing to co-manipulation of objects between humans
and robots. Finally, Miihlbacher-Karre [15] integrate electric
field sensing into a robotic bar-tending system in order to
determine the fill level of beverages.

More recently, acoustic sensing has been developed for
pre-touch sensing. In [16], Jiang and Smith create a “seashell
effect” sensor to localize objects that are typically difficult
to sense with RGB-D cameras and other optical sensors,
and then apply those measurements to grasping. The sensor
consists primarily of a miniature metal pipe that has a
microphone attached to one end. As objects approach the
open end of the pipe, the effective resonant frequency of the
pipe changes, which the microphone measures.

The above works focus on estimating the pose of the
surface local to the pre-touch sensors for the purpose of
single-shot grasping, whereas we are interested in full pose
estimation of an object. Knowing the full pose becomes
increasingly important when considering more complex ma-
nipulations, such as those that involve opening, twisting, or
re-grasping an object. To the best of the authors’ knowledge,
our work is the first to estimate the full pose of an object
by applying ICP (or any other similar algorithm) to a single,
sparse pre-touch scan.

One of the disadvantages of the previously mentioned pre-
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Fig. 2: Boxplots of sensor measurements over the specified range for white, grey, and black target objects. Each box consists

of 30 measurements.
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Fig. 3: Left: The printed circuit boards that compose the
sensor. Middle: The 3D printed sensor casing. The hole in
the middle of the case is for a sensing module soldered to
the bottom of the main PCB. Right: The assembled sensor
with arrows denoting the directions of five out of six sensor
modules’ infrared beams.

touch sensors is that they only make sparse measurements,
requiring the robot to move its end-effector in order to
densely measure a region of interest prior to manipulation.
Thus, a number of works have developed a compromise
between head-mounted cameras and pre-touch sensing by
mounting cameras on the robot’s wrist [17] [18]. However,
although less actuation may be required to measure a region,
the relative size of the cameras limit the robot’s mobility. In
addition, it may not be necessary to densely measure a region
in order to achieve the given task, as demonstrated by the
experiments in Section 5.

Solving the Rubik’s cube has been previously suggested
as a benchmark for robot manipulation [19], [20]. Beyond
this suggestion, [20] and [21] develop robot systems for
solving the Rubik’s cube. In [20], the robot’s grippers are
somewhat specialized; their trough shape is used to grasp
the cube at the corners and thereby reduce the uncertainty
in the cube’s state. The system in [21] was based on a
PR2 robot without task specific modification of the grippers.
They demonstrated that their system can successfully solve a
basic Rubik’s cube puzzle that required six rotations, which
matches the performance of our baseline system that does not
use pre-touch sensing for manipulation. However, there is no
further information to indicate that this system is capable of

robustly solving Rubik’s cubes that require a larger number
of rotations.

III. SENSOR HARDWARE

This work explores the use of two different pre-touch
sensors in aiding sequential manipulation. One is an electric
field sensor that was adapted from the work of [14]. The
other is a new optical time-of-flight sensor, which the fol-
lowing paragraphs of this section will describe. Both sensors’
casings were designed to match the form factor of the PR2’s
fingertip. On each of the robot’s parallel jaw grippers, an
optical sensor was attached to the left fingertip, while an
electric field sensor was mounted to the right fingertip. Only
the optical sensor was used when attempting to solve the
Rubik’s cube because the electric field sensor is not able to
sense the plastic Rubik’s cube effectively.

The optical pre-touch sensor measures the distance to a
surface using the VL6180x optical time-of-flight sensor [22]
module created by ST MicroElectronics. It is capable of
measuring the distance to an object with millimeter accuracy
at a range of lcm to 10cm. Furthermore, some objects
(particularly those with light colors) can be detected out
to a range of 25.5cm. Fig. 2] demonstrates the sensor’s
performance over various colored targets.

The sensor supports up to six VL6180x sensing modules,
where one can be placed at the tip of the finger, two on each
side, and one in the pad of the finger. The location of each
sensing module is labeled in Fig. [3] and will be referenced as
such when referring to a specific sensor module throughout
the rest of this work. The sensor’s design consists of a main
board (29x16.5mm) and a secondary board (8.25x5.75mm).
The main board hosts an ATMegal68PA microcontroller that
communicates with each of the VL6180x sensing modules
over I12C. The sensor module on the pad of the fingertip
sensor is directly soldered to the main board. Every other
module is connected to the main board through 1mm pitch
headers that interface between the main board and secondary
boards.

The robot is able to collect data from each of the six
sensing modules at a rate of 30hz. Measurements are passed
from the sensor’s microcontroller to the robot through an SPI



interface built into the gripper and then published to a ROS
topic. Two metal screw inserts are pressed into the sensor’s
casing so that it can be fastened to the robot’s fingertip.
The components required to build one of these optical
sensors cost less than $100. The circuit schematics, PCB
files, sensor casing CAD files, and firmware are publicly
available at https://bitbucket.org/planc509/optical-distance.

IV. METHODS

Throughout this work, the robot uses simple scanning
strategies to estimate the pose of various objects. The sim-
plicity of these scans suggests that they are applicable to a
wide range of objects. The following subsections will detail
the scanning strategies used, and Section 5 will present their
effectiveness. In the remainder of this text, unless explicitly
said otherwise, any coordinate references are with respect
to the coordinate frame of whichever gripper is currently
holding the object. That is, the y-axis extends along the
direction that the gripper opens and closes, the x-axis extends
out along the direction that the robot’s fingertips point, and
the z-axis is orthogonal to both the x and y-axes using a
right-handed coordinate system.

A. Optical Pre-touch Scanning for Rubik’s Cube

In this work, pre-touch sensing is used to estimate the pose
of the cube not only to marginalize positional error in the
next grasp, but also to correct any error that does occur from
one manipulation to the next. As the robot solves the Rubik’s
cube, it will need to transfer it from one hand to the other, as
well as change how it is grasping it. Before each re-grasp,
the robot uses pre-touch scanning to refine its estimate of
the pose of the cube with respect to the coordinate frame of
the gripper that is currently holding it. The robot assumes
that the cube is oriented such that its upper and lower faces
are approximately parallel to the ground. This assumption is
not always true, but works well in practice. Furthermore, the
robot already has a good approximation of the center of the
cube’s position in the y direction and its rotation around the
y-axis because the cube is held between the robot’s fingers.
However, due to errors in previous re-grasps, the cube could
have shifted unexpectedly along the x and/or z directions.
There are many pre-touch scanning strategies that could be
used to estimate the position along these two directions, but
our method used the following strategy in order to minimize
the amount of actuation required:

1) The gripper that is not holding the cube is opened if
it is not already open.

2) The optical pre-touch sensor on that gripper’s fingertip
is then oriented such that the beam of sensing module
3 is normal to one of the faces of the cube that is
normal to the xz-plane, such as in Fig. (1| This gripper
is positioned such that the beam is not yet broken by
the cube.

3) The gripper begins to close, causing the sensor to move
in the y-direction. As the gripper closes, any significant
change in the sensed distance indicates the position of

the edge of the cube, allowing the robot to infer the
cube’s position along one of the uncertain axes.

4) Once the gripper has finished closing, the robot uses
the sensor’s distance measurements at the current po-
sition to estimate the position of the cube along the
remaining uncertain axis.

This pre-touch scanning strategy was integrated into a
baseline system that uses a computer vision module to
recognize the colors of the cube faces, an iterative deepening
A* search [2] [21] to determine the necessary cube rotations,
and a finite-state machine based motion planner to execute
the trajectories necessary to solve the cube.

B. Pre-touch Scanning for Common Objects

Pre-touch scanning can also be applied to objects with
more complex geometry. We aim to demonstrate that a
simple 1D scan of an arbitrary object can contain enough
distinctive features to estimate its pose when matched to a
reference model. This estimate could be useful when initially
picking up an object, or before performing a re-grasp.

Again, there are many different possible scanning strate-
gies. One could try random trajectories until the robot is
confident that it has correctly inferred the pose, or trajectories
based on heuristics or learning models could be executed.
We will explore the generation of such trajectories in future
work. For this work, a single trajectory was chosen by
the experimenter for each object that was likely to capture
distinctive features. Each of the chosen trajectories consisted
of the scanning gripper moving in a straight line with a
fixed orientation. While executing each trajectory, the robot
sampled the object at discrete points along it, where the
interval between the sampling points was determined by the
size of the object such that approximately 50 samples were
collected. The process of obtaining a sample was slightly
different depending on which pre-touch sensor was being
utilized.

When using the electric field pre-touch sensor to scan the
object, the robot oriented the front of its fingertip orthogonal
to the trajectory and towards the object. The object affects
the sensor’s measurements by shunting displacement current
away from the electrode located at the front of the fingertip
sensor. At each sample point, the robot moves its gripper to-
wards or away from the object, causing the amount of current
shunted away, and therefore the change from the baseline
measurement (i.e. the measurement when the object is far
way from the sensor), to change. The robot obtains a distance
measurement by servoing its gripper in this fashion until the
change from the baseline measurement is sufficiently close
to a pre-determined threshold. This threshold, which was
recorded before beginning the scan and is different for each
object, indicates when the fingertip is 1.5cm away from the
object. This technique makes the assumption that the volume
of the object local to the fingertip is uniform throughout the
trajectory. Although this assumption is usually violated, in
practice a satisfactory point cloud can often still be obtained
with this method, as will be shown in Section 5.



When the robot uses the optical pre-touch sensor to scan,
it again orients the front of its fingertip orthogonal to the
trajectory and towards the object. At each sample point along
the trajectory, the robot uses the sensor module at the tip of
its finger to measure the distance to the object. Unlike the
electric field sensor, the only actuation required is movement
along the trajectory because the distance to the object at each
sample point is directly reported by the optical sensor.

V. EXPERIMENTS

The following two experiments were undertaken to mea-
sure the ability of pre-touch sensing to aid robots in sequen-
tial manipulation. In both experiments, 1D pre-touch scans
are used to estimate object pose by comparing the collected
data to a reference model. By re-estimating the object’s pose,
the robot can negate previous manipulation errors and more
accurately perform subsequent manipulations.

A. Rubik’s Cube Manipulation Evaluation

In order to determine the effectiveness of pre-touch scan-
ning in the context of Rubik’s cube solving, a system (as
briefly described at the end of Section 4a) for manipulating
the cube was created in which pre-touch sensing could be
enabled or disabled. When pre-touch is disabled, the system
serves as a baseline for what is achievable without pre-touch
sensing. Instead of scanning the cube after each re-grasp,
the baseline system just assumes that the robot re-grasped
the cube in the exact desired location.

1) Setup: We generated 10 random cube configurations
that required between 20 to 23 rotations for the system
to solve, and had both the baseline and pre-touch enabled
versions of the system attempt them. In addition to reporting
the success/failure rate, the robot’s estimate of the cube’s
position throughout each trial is examined for both methods.
Prior to each re-grasp, the robot’s estimate of the cube
position was recorded. All pose estimates were transformed
into the frame of the gripper currently grasping the cube.
In order to get ground truth measurements of the cube’s
position, an AR tag was attached to each face of the cube. We
then used a Kinect mounted to the robot’s head and cameras
external to the robot to detect and estimate the position of the
cube when appropriate. An AR tag was also added to each
of the robot’s grippers at a fixed distance away from that
gripper’s coordinate frame. This allowed us to compute the
pre-touch enabled pose estimate (and corresponding ground-
truth) of the cube without using the robot’s coordinate
transforms. Although our robot was re-calibrated prior to
beginning this work, there was still significant error in the
coordinate transforms (as there would be for any calibration
of a high degree of freedom robot). Despite the use of AR
tag detection as a ’ground truth’ estimate of the pose of the
cube, we are not implying that this method is better than pre-
touch sensing for pose estimation. This method will have its
own errors depending on how well the tag is detected, and
has the disadvantage of requiring one or more tags to be
placed on any object whose pose is to be estimated.

TABLE I: End-to-end Rubik’s Cube Solving

Method Result Success  Fail  Avg. Rotations Completed
Baseline 0 10 9.6
Pre-touch 8 2 20.1

2) End-to-end Results: The experiment demonstrated
that the robot’s ability to solve the Rubik’s cube was
significantly enhanced by pre-touch sensing, as shown in
Table [I Using the pre-touch enabled method, the robot
successfully solved 8 out of 10 cube configurations. As for
the two failure trials, the robot finished 14 and 19 rotations
out of 21 and 20 total required rotations before failing
to complete a rotation. On the other hand, the baseline
method did not successfully solve any of the puzzles. The
maximum number of successful rotations for any of the 10
trials was 17, the minimum was 3, and the average was
9.6. All of the unsuccessful rotations occurred when the
robot failed to re-grasp the cube; either as it tried to transfer
the cube from one gripper to the other, or as it attempted
to grasp the cube in order to rotate a face. These results
demonstrate that although re-grasping motions are very
sensitive to positional error, pre-touch sensing allows the
robot to effectively compensate for them.

3) Intermediate Pose Estimation: Comparing the robot’s
positional estimate of the Rubik’s cube for both methods
to the ground truth values also yields interesting results. The
robot re-estimated the pose of the cube prior to each re-grasp.
For each pose estimate, the error was calculated as the root-
mean-square deviation (RMSD) between the x and z axes
of the estimate and the recorded ground-truth. The RMSD
throughout each trial for both methods are summarized as
box plots in Fig. @]

The observed errors demonstrate that pre-touch sensing
allowed the robot to significantly reduce the amount of error
in the robot’s estimate of the pose of the Rubik’s cube.
The robot has a finger width that is approximately equal
to the size of a sub-cube of the Rubik’s cube. Given that
the desired grasp point is exactly in-between two sub-cubes,
the margin of acceptable error is approximately half the
width of a sub-cube. More error than this could cause the
robot to unintentionally constrain one of the faces, causing
a future manipulation to fail. Alternatively, error above this
threshold could cause the robot to fail to even grasp the cube.
The left plot of Fig. ] demonstrates that for most trials, a
large portion of the baseline method’s pose estimates had an
RMSD significantly larger than half of the size of a sub-cube.
In contrast, the right plot shows that the RMSD of pre-touch
aided estimates very rarely went above this threshold. In fact,
for the pre-touch enabled method, most pose estimates had
an RMSD of less than 0.8cm. Thus, through the use of pre-
touch scanning, the robot has been able to limit the error
in its estimate of the cube’s pose and thereby solve it more
robustly.
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Fig. 4: Box plots plots of positional error for the baseline (left), and corrected pre-touch (right) methods. Each box corresponds
to one of the 10 trials and consists of all cube pose RMSD errors observed during that trial. The RMSD error is recorded
prior to each re-grasp. The horizontal line across each plot denotes half of the dimension of a sub-cube, demonstrating that
the increased dexterity provided by pre-touch sensing is significant for this task.

B. Extension of Pre-touch Scanning to Common Objects

While pre-touch sensing was found to be very appli-
cable to manipulation of the Rubik’s cube, the following
experiment examines how simple pre-touch scanning can be
used in more general manipulation tasks. Here, we estimate
the pose of an object by using ICP to match a single,
simple pre-touch scan to a corresponding reference model. A
future manipulation system could then utilize the transform
between the pre-touch scan and reference model to compute
the object’s pose. Such an estimation may be useful for
manipulation when the object is initially grasped, and/or as
the object is re-grasped throughout the manipulation task.

1) Setup: We evaluate the use of pre-touch scanning
on seven common objects that could require sequential
manipulation: a metal bowl, banana, lemon, coffee can,
hammer, bell pepper, and a glass soda bottle. Each object is
separately scanned by an electric field pre-touch sensor and
an optical pre-touch sensor as described in Section 4b. Each
sensor has an operating regime in which it is most effective.
In particular, the optical pre-touch sensor can sense non-
transparent objects well, while the electric field sensor is lim-
ited to sensing objects with a dielectric constant significantly
different from that of air. Furthermore, the optical sensor has
a long, narrow sensing region while the electric field has a
short, wide sensing region. It is conceivable that a future
system could combine measurements from both sensors to
obtain more accurate estimates over a wider set of objects
than either sensor alone. For now, we explore each sensor’s
individual ability to provide geometrically discriminative
features for pose estimation through pre-touch scanning.

2) ICP Matching Results: After obtaining a pre-touch
scan of an object, we estimate its pose by matching the scan
to a point cloud reference model. We used Kinect Fusion [23]
to create each reference model, and the PCL library’s ICP
algorithm [24] to do the matching. The results of each scan
are shown in Fig. [5]and the fitness scores (where lower scores
indicate better matches) are given in Table However,

fitness score is not always a clear indicator of successful
matching. Ultimately, we qualitatively specify the result of
the matching by examining if the pre-touch scan matches to
the correct region of the object.

TABLE II: ICP Fitness Score

Object | '\ » 3 4 5 ¢ 7
Sensor

E-field(10~9) 6 8 7 17 9 15 24
Optical(10~5) 23 24 6 24 28 33 210

The electric field sensor performed particularly well on
two objects - the bowl and the hammer - most likely because
they are made of metal. In fact, for these objects, the electric
field sensor outperformed the optical pre-touch sensor, which
failed to even find a match for the hammer. Although the
optical sensor’s raw point cloud of the hammer captures its
general shape, we believe that a number of poor samples
at the claw end of the hammer caused the matching to fail.
These bad readings could have been caused by the reflectivity
of the hammer head, the more complex geometry at the claw
end, or a combination of the two. Although the coffee can is
also made of metal, the electric field sensor did not perform
as well, potentially due to the internal coffee powder not
being uniformly distributed throughout the can.

Visually, the raw point clouds of the fruits created by
the optical pre-touch sensor capture the profile of the cor-
responding fruit. However, the scan of the banana did not
correctly match its reference model, most likely due to a
failure to capture distinctive features in the pre-touch scan.
The electric field sensor failed to get a distinguishable outline
of the bell pepper, potentially due to the bell pepper being
mostly hollow inside. Its raw scans of the other fruits capture
the general shape of both the lemon and the banana, albeit
with less fidelity than the optical sensor.

When scanning the soda bottle, the electric field sensor
captured the shape of the body and the gradual transition



Fig. 5: The results of applying pre-touch scanning and ICP to seven common objects. The first column shows each of the
seven objects and the region that was scanned in green. The second column shows the raw point cloud obtained by the
electric field sensor for each object, and the third column shows how the ICP algorithm matched the raw point cloud to the
reference model. The raw point cloud is colored green if the ICP algorithm found a correct partial or full match, and red if
it failed. The fourth and fifth columns display the analogous results for the optical pre-touch scans.




from the body to the neck well. The matching gives a
very rough estimate of the pose of the bottle. Note that
the reference model was obtained by wrapping the bottle
in opaque tape because transparent objects are difficult for
the Kinect to sense. Accordingly, the optical pre-touch sensor
did very poorly when scanning the uncovered bottle.

This experiment has demonstrated that for many objects,
a single, simple scan is sufficient to get a good estimate of
the pose of the object. Furthermore, only the electric field
scan of the bell pepper and the optical scan of the bottle
completely failed to retrieve any geometric information. This
is encouraging because when one sensor completely failed,
the other was able to capture at least some geometric infor-
mation. Furthermore, it is possible that a method specifically
designed to match these types of 1D scans to reference
models would produce even better results than off-the-shelf
ICP. It is therefore feasible that a system employing multiple
scans with both of the sensors could have a robust ability to
recover the pose of a wide range of objects.

VI. CONCLUSION

This work presented methods for using pre-touch scanning
to help robots perform sequential manipulation. We first
developed a new optical time-of-flight pre-touch sensor that
is composed of inexpensive components. We then showed
that this pre-touch sensor allows the robot to precisely re-
estimate the pose of the Rubik’s cube, endowing the robot
with the dexterity necessary to robustly solve the cube.
Finally, through the use of ICP, we extended pre-touch
scanning to pose estimation of seven common objects and
showed that even a single, simple scan can capture enough
geometric information to perform the estimation well.

Now that we have demonstrated the utility of pre-touch
scanning in achieving sequential manipulation, there are
several directions in which we would like continue our work.
One area is to explore how the robot can determine where
to scan and how to generate a trajectory that has a high
probability of capturing useful geometric information. In
conjunction with this direction, we are also interested in
how robots can use electric field sensors to create electric
field images. Furthermore, we will aim to develop metrics
for the quality of an executed scan. Such metrics will be
important if the robot is trying to manipulate objects that
have the potential to not be well detected by one or more of
its sensors. Finally, we would like to examine how multiple
modalities of pre-touch scanning can most effectively be
fused together for the purpose of robot manipulation.
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